Profilpipe.ru

Профиль Пипл
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Предел прочности при сжатии для растворов цементных

Строительный раствор

На гидравлических вяжущих веществах готовят и водонепроницаемые растворы, предназначенные для придания элементам сооружения повышенной водонепроницаемости.

По прочности на сжатие растворы делятся на марки: 4, 10, 25, 50, 75, 100, 150, 200, 300. Марка раствора определяется испытанием на сжатие образцов — кубиков 70,7 х 70,7х 70,7 мм или половинок балочек (после испытаний балочек на изгиб) размером 4 х 4 х 16 см в возрасте 28 суток после твердения при температуре (20 ± 3) ° С.

Вяжущие — все виды цементов, известь, гипс и др. Они должны удовлетворять требованиям соответствующих ГОСТ. Для растворов низких марок (4 и 10) целесообразно использовать известь и местные вяжущие вещества (известково-шлаковые, известково-пуццолановые и др.). Выбор вяжущего следует производить в соответствии с действующими стандартами. Наибольшее применение имеют растворы на цементно-известковом вяжущем. В этом случае известь выполняет две функции: вяжущего и пластификатора.

Мелкие заполнители (пески) бывают природные и искусственные. Природные (кварцевые, полевошпатовые и др.) используются значительно чаще и применяют их в растворах для каменной кладки, для замоноличивания, для отделки. Искусственные (продукт дробления горгых пород — гранитов, мраморов, известняков, туфов, шлаков и т.п.) используются в штукатурных работах.

Требования к зерновому составу и чистоте зависят от назначения и марки раствора и определены соответствующими ГОСТ.

Получение растворов с заданными свойствами обусловлено точной дозировкой исходных компонентов и тщательным контролем за свойствами растворной смеси — подвижностью и водоудерживающей способностью. Подвижность смеси характеризуется глубиной погружения в растворную смесь эталонного конуса (см. схему слева) и различается в зависимости от назначения раствора. Для растворов, подаваемых растворонасосом, глубина погружения должна быть примерно 14 см; для растворов при кладке из кирпича, природных мелких камней и блоков — 9 . 13 см; для растворов, используемых при монтаже панельных и крупноблочных зданий, — 5 . 7 см.

Аналитическим путем количество цемента можно найти из зависимости прочности на сжатие от количества и активности цемента:

где Rp — предел прочности при сжатии раствора в возрасте 28 суток; R в — активность вяжущего, МПа; Q в — количество вяжущего на 1 м3 песка, т.

Прочность растворов на портландцементе определяется по формуле:

где Rp — предел прочности при сжатии в возрасте 28 суток; R ц — активность цемента; Ц/В — цементно-водное отношение.

Прочность растворов, уложенных на пористое основание, которое отсасывает воду из раствора и уплотняет этим его, увеличивается примерно в 1,5 раза.

Прочность растворов зависит также от активности цемента, его количества в растворе и качества песка:

где Ц — расход цемента на 1 м3 песка, т; k — коэффициент (для мелкого песка k = 0,5 . 0,7, для среднего k = 0,8 и для крупного k = 1).

Для определения количества вяжущего на 1 м3 раствора надо разделить расход вяжущего, приходящийся на 1 м3 песка, на коэффициент выхода раствора. Коэффициент выхода раствора — это отношение объема раствора к объему песка (изменяется в пределах 0,8 . 0,9).

Прочность смешанных растворов зависит от вводимых в них пластифицирующих добавок (извести, глины и др.), органических поверхностно-активных веществ (сульфитно-спиртовой барды, мылонафта и т.д.). Каждому составу цементного раствора соответствует оптимальное количество добавки, при которой смесь обладает наилучшей удобоукладываемостью и наибольшей прочностью.

При использовании в качестве пластификаторов извести или глины их количество (кг) на 1 м3 песка определяется по формуле:

где D — количество пластификатора на 1 м3 песка, кг; Q в — вяжущего на 1 м3 песка, кг.

Для этих же растворов с подвижностью 9 . 10 см количество воды приближенно определяется по формуле:

где Q в и Q д — расход цемента и добавки на 1 м3 песка, кг.

Для пересчета расхода материалов из объемных единиц в массовые и обратно соответственно их умножают или делят на среднюю плотность. Для приведения рассчитанного состава к общепринятому выражению — отношению объемов — нужно полученное соотношение В:Д:1 разделить на В и тогда получим 1:Д/В:1/В, где В — объем цемента, полученный делением Q в на среднюю плотность.

Растворы для каменной кладки. В зависимости от условий работы кладки растворы изготовляют на цементе или на цементно-известковом вяжущем. Основными характеристиками их являются марки по прочности и морозостойкости. На цементе готовят растворы, работающие в тяжелых влажных условиях и в агрессивной среде. Цементно-известковые растворы используют для кладки, находящейся в маловлажных или сухих условиях.

Для приготовления растворов можно использовать все виды цементов, исключение составляют растворы для кладки, находящейся в агрессивной среде, где должен использоваться сульфатостойкий или пуццолановый портландцемент. В качестве известкового вяжущего применяют известковое тесто, реже — молотую известь-кипелку, известь-пушонку. Минимальный расход цемента для наземных конструкций при относительной влажности воздуха до 60 % (сухие условия) и в подземных маловлажных грунтах составляет для цементно-известковых растворов 75 кг на 1 м3 песка; минимальная марка раствора при I степени долговечности зданий должна быть > 10 и 25 (первая цифра для наземных конструкций, вторая — для подземных), при I и II степенях долговечности — 10. Для наземных сооружений с влажностью более 60 % и подземных во влажных грунтах наименьший расход цемента 100 кг на 1 м3 раствора, минимальная марка раствора в этом случае при степенях долговечности I и II — 25 и 50, при степени долговечности III — 25. Глубина погружения конуса следующая: для растворов, используемых при кладке из обыкновенного кирпича, бетонных камней и камней из легких пород, 9 . 13 см; для растворов, применяемых при кладке из пустотелого кирпича или керамических камней, — 7 . 8 см; для растворов при кладке из бутового камня под заливку — 13 . 14 см, под лопатку — 8 . 10 см; для вибрированной бутовой кладки — 1 . 3 см.

Читать еще:  Дифференциальная диагностика кариеса цемента

Большие из указанных величин погружения конуса применимы к сухим пористым материалам или при кладке в сухую, жаркую погоду; меньшие — при кладке из плотных материалов или хорошо смоченных пористых во влажную погоду или в зимнее время. Контроль за качеством растворов производится регулярно в соответствии с указаниями ГОСТ.

Отделочные растворы. Их используют при оштукатуривании стен мокрым способом. Для отделочных растворов решающее значение имеют не прочность, а удобоукладываемость и сцепление с основанием. При отделке помещений с относительной влажностью свыше 60 %, а также наружных стен, цоколей, карнизов, подвергающихся периодическому увлажнению, используют цементные и цементно-известковые вяжущие.

Наружные и внутренние каменные, деревянные и гипсовые стены в помещениях с влажностью до 60 %, в районах с устойчивым сухим климатом — известково-гипсовые; внутренние деревянные и гипсовые стены и перегородки в помещениях с влажностью до 60 % — известково-гипсовые и гипсовые. Составы штукатурных растворов зависят от условий эксплуатации и рода основания.


Составы для наружной штукатурки стен, цоколей, карнизов, подвергающихся систематическому увлажнению

Предел прочности при сжатии для растворов цементных

Под действием внешних сил любое твердое тело может перемещаться в пространстве, деформироваться (т. е. изменять свои формы и размеры) или одновременно перемещаться и деформироваться.

Если тело деформировалось, то в нем возникают внутренние силы сопротивления, стремящиеся вернуть ему первоначальную форму. Существование внутренних сил обусловлено сцеплением отдельных частиц, составляющих тело. При определенных величинах внешних сил внутренние силы сопротивления возрастают настолько, что преодолевают силу сцепления частиц, и тело разрушается на части.

Способность материалов сопротивляться внутренним силам, возникающим под действием внешней нагрузки, называется прочностью. Цементный камень, образовавшийся в результате затвердевания цементного теста, обладает прочностью. В момент разрушения образцов напряжения достигают наибольших значений. Эти напряжения называются пределом прочности.

Прочность бетонов при сжатии и изгибе определяется прочностью цементного камня. Поэтому ЕN 196-1 предусматривают испытания цементных образцов на эти виды усилий. Согласно ЕN 196-1, прочность цементов при сжатии и изгибе характеризуется соответствующими пределами прочности образцов из цементного раствора определенного состава, имеющих форму прямоугольной призмы с размерами 40 х 40 х 160 мм, изготовленных и испытанных по стандартной методике.

Предел прочности при изгибе определяют испытанием образцов-призм (балочек) на изгиб, а предел прочности при сжатии — испытанием половинок этих образцов-балочек на сжатие. При испытании образцов на изгиб в цементной балочке возникает сложное напряженное состояние, при котором в верхней части сечения развиваются напряжения сжатия, а в нижней — растяжения.

Предел прочности при сжатии цементных образцов в возрасте 28 суток, изготовленных, твердевших и испытанных по стандарту, называется активностью цемента. Активность (прочность) цемента положена в основу классификации его на марки. Марка цемента является основной технической характеристикой цемента. Она необходима при расчете и назначении составов бетонов и растворов.

2. Сущность испытания

Испытание на изгиб:

Осуществляется с использованием специальной комбинированной машины для испытаний образцов из раствора или с использованием специального приспособления, вставляемого в пресс. Машина для испытаний на изгиб должна обладать диапазоном нагружения до 10 кН с точностью до ±1,0 % приложенного усилия и скоростью нагружения образцов 50±10 Н/сек.

При нагружении образцов опоры и верхняя часть должны иметь круглую форму диаметром 10,0±0,5 мм, а расстояние между нижними опорами — 100±0,5 мм. Длина опорных элементов — от 45 до 50 мм.

Схематически нагружение образца при определении прочности на изгиб осуществляется по приведенной схеме (рис. 1):

Предел прочности образца при изгибе Rf вычисляется по следующей формуле:

Рис. 1. Схема расположения цементной балочки на опорных элементах

Rƒ — предел прочности при изгибе (в МПа);
b — ширина поперечного сечения призмы (в мм);
Fƒ — максимальная нагрузка, предшествующая моменту разрушения образца (в ньютонах);
l — расстояние между опорными элементами (в мм).
Испытание на изгиб проводится до разрушения образца на две половинки (рис. 2).

Читать еще:  Смесь фосфогипса с цементом

Испытание на сжатие:

Осуществляется с использованием специальной комбинированной машины для испытаний половинок образцов из раствора с фиксированной площадью 1600 мм2. Результаты представляются в МПа (соответствует Н/мм2). Усилие прилагается вертикально до момента разрушения.

Визуально это выглядит следующим образом (рис. 3):

Предел прочности образца на сжатие Rс вычисляется по следующей формуле:

где:
Rс — предел прочности на сжатие (в мегаПаскалях);
Fс — максимальное усилие, предшествующее разрушению образца;
1600 — площадь накладных пластин, (40х40 мм) мм2.

3. Средства контроля и вспомогательное оборудование

Различные комбинированные машины для испытаний на сжатие и изгиб с диапазоном измерений до 200 кН выполнены в соответствии с EN 196–1 (рис. 5, 6, 7 и 12).

4. Подготовка и проведение испытания

После выдержки образцов в воде их вынимают из ванны (рис. 6), просушивают, после чего они готовы к проведению испытаний. Возраст образцов определяется со времени затворения цемента водой. Испытания цементных призмочек, согласно EN 196–1, проводятся в следующем «возрасте» и со следующими возможными отклонениями по времени их испытания:

Рис. 2. Цементная балочка перед испытанием на изгиб

Учебно-исследовательская лаборатория буровых растворов и крепления скважин

На базе кафедры нефтегазового дела в 2004 году создана учебно-исследовательская лаборатория буровых растворов и крепления скважин, которая обеспечена самым современным оборудованием для определения всех качественных показателей буровых и тампонажных растворов, исследования ингибирующих, консолидирующих, диспергирующих свойств растворов и параметров высокомолекулярных соединений, эмульсий, газожидкостных смесей, цементов, минеральных вяжущих веществ и смол.

Специализация:

  • разработка буровых и тампонажных растворов в соответствии с геолого-техническими условиями бурения и крепления нефтяных и газовых скважин;
  • исследования отходов промышленных предприятий Иркутской области (Байкальский ЦБК, Братский ЛПК и др.) с целью использования в буровых технологиях для охраны окружающей среды;
  • моделирование, предупреждение и ликвидация прихватов бурильного инструмента при проводке скважин в сложных геологических условиях;
  • разработка и совершенствование изоляционных составов для предупреждения и ликвидации поглощений бурового раствора;
  • разработка систем буровых растворов для первичного и вторичного вскрытия продуктивных пластов и методов предупреждения образования водонефтяных эмульсий.

Уникальность и возможности лаборатории.

Квалификация кадрового состава, возможности и качество приборов позволяют проводить работы по определению параметров буровых и тампонажных растворов в соответствии с требованиями современных норм, ТУ и стандартов. Также лаборатория оснащена современным оборудованием зарубежного производства, которое позволяет проводить комплексные исследования по изучению состава и свойств буровых и тампонажных растворов и их поведения во внутрискважинных условиях (высоких давлений и температур), что позволяет подбирать оптимальные рецептуры для различных геолого-технических условий.

К основному оборудованию лаборатории относятся:

  • Тестер набухаемости глинистых сланцев в динамических условиях, предназначенный для определения показателя буровых растворов, влияющего на набухание горных пород.
  • Тестер для определения смазывающей способности бурового раствора, предназначенный для определения коэффициента смазывающей способности бурового раствора между двумя стальными поверхностями, и для определения прочности пленки, которая создается исследуемым флюидом в случае приложения определенного усилия.
  • Анализатор водоотдачи в динамических условиях, предназначенный для определения фильтрационных характеристик тампонажных цементов в динамических условиях, максимально приближенных к скважинным.
  • Консистометр высокого давления и температуры, предназначенный для определения времени загустевания цементных растворов как в атмосферных условиях, так и в условиях, моделирующих внутрискважинные давления и температуры.
  • Ультразвуковой анализатор цемента с приставками «Система измерения объемного расширения/усадки цемента» и «Система измерения СНС в условиях высоких температур и давлений».
    Данный комплекс оборудования позволяет определять:
    • неразрушающим методом предел прочности при сжатии цементного камня в процессе его твердения;
    • изменение объема образца цементного раствора в процессе его твердения и строить график расширения/усадки с высокой точностью;
    • статическое напряжение сдвига цементного раствора.
      Все исследования проводятся в условиях высоких температур и давлений.
  • Камера набора прочности (автоклав), предназначенная для выдержки образцов цементного раствора в условиях, максимально приближенных к внутрискважинным для последующего определения предела прочности при сжатии цементного камня.
  • Машина для определения предела прочности образцов при сжатии/изгибе (пресс), предназначенная для определения пределов прочности цемента по отечественным и зарубежным стандартам (ГОСТ, API).

В лаборатории проводятся занятия для студентов, а также проводится учебная практика. Лаборатория оснащена учебным и компьютерным классами.

Федеральное государственное бюджетное образовательное учреждение высшего образования

Прочность бетона на сжатие: пределы, классы и марки, ГОСТы. Характеристики газобетона

Прочность является важнейшим параметром бетона. Эта характеристика является главной при выборе раствора того или иного класса, если именно этот материал выбран как основной для будущего объекта.

Читать еще:  Как зажелезнить бетонные дорожки цементом

На фото — лабораторные работы по определению состояния застывшего материала

Характеристики прочности

Сразу следует сказать, что в силу особенностей своей структуры, бетон наиболее устойчив к деформации на сжатие. Именно поэтому объекты, где предусмотрено использование цементного раствора, как основного строительного материала, проектируют таким образом, чтобы именно на него передавались, прежде всего, сжимающие нагрузки.

Важно! Такие характеристики, как прочность на растяжение при изгибе, или же обыкновенная прочность на растяжение, учитываются довольно редко.

Пределы

Разговор о таком состоянии материала, как предел, можно изобразить в нескольких составляющих, и перечислить основы, а это будут:

  • Всегда следует помнить, что при всех технических и практических преимуществах этого строительного материала, прочность при растяжении составляет от 5 до 10% от величин, которых достигает предел прочности при сжатии бетона.
  • Предел прочности при изгибе достигает максимум 15% от предела прочности на сжатие
  • Марка или класс раствора определяются в возрасте 28 суток. Именно они и определяют прочность на сжатие.

Испытание готового блока на показатели сжатия, без которых невозможно строительство

  • Прочность может определяться и в возрасте трёх, семи и даже шестидесяти суток.
  • Значения, которые получают в результате измерений, не должны превышать предел прочности на сжатие бетона, соответствующей марке или классу более чем на 15%. Важно, подчеркнуть, что именно такая величина установлена в целях экономии цемента.

Классы и марки

Существуют следующие классы бетона: Вb1; Вb1,5; Вb2; Вb2,5; Вb3,5; Вb5; Bb7,5; Вb10; Вb12,5; Вb15; Вb20; Вb25; Вb30; Вb35; Вb40; Вb50; Вb55; Вb60.

Важно! Класс бетона по прочности на сжатие, по сути, является его гарантированной прочностью, измеряемой в мпа , с обеспеченностью, равной 0,95.

Также существует разделение по маркам. О марке говорят, в основном, когда речь идёт непосредственно о тяжёлых типах материала. Различают между собой следующие марки: Мb50; М75; М100; М150; М200; М250; М300; М350, Мb400; Мb450; Мb500; Мb600; Мb700; Мb800.

Марка данного материала представляет собой нормируемое значение средней прочности бетона. Измеряется это значение в кгс см2, а чтобы было понятно, поясним, что это означает действие одного килограмма сил на квадратный сантиметр площади.

Самый простой вакуумметр, который играет важную роль в допущении материала к работе

Естественно, чем более высокими прочностными характеристиками обладает раствор, тем выше и его цена, так как эти понятия практически взаимосвязаны.

Важно! При составлении проектной документации чаще всего указывают класс прочности на сжатие бетона. Марку же указывают лишь в отдельных случаях, когда это действительно необходимо.

Госты

ГОСТ на марку бетона по прочности на сжатие устанавливает соответствие между классами и марками. Чтобы было понятно, как определить прочность раствора по его буквенному и цифровому обозначению, необходимо рассмотреть конкретный пример.

Для этого подойдёт такой распространённый класс материала, как В25. Прочность бетона В25 на сжатие означает, что бетон данного класса выдерживает давление, равное 25 Мпа в 95% случаев.

Пример проведения строительной экспертизы, которая определяется гостом

Газобетон

Отдельно следует отметить такое материал как газобетон и его прочностные характеристики. Дело в том, что бытует мнение о хрупкости этого строительного материала. Это не соответствует действительности.

Факты говорят о том, что прочность на сжатие газобетона с плотностью D500 (35 кг/м2), позволяет применять его для строительства двухэтажных домов. Газобетонные блоки с плотностью D600 уже могут использоваться для пятиэтажных строений.

Наглядный пример плотности газобетона

Самостоятельная проверка

По ГОСТу, прочность на сжатие проверяется в условиях лаборатории. Однако есть возможность проверить соответствие марки и самостоятельно. Для этого необходимо выполнить следующие действия, которые мы приведем в таблице.

Подготовка формыПриготовить можно, к примеру, деревянные формы размером 100х100х100 мм.
Забор смесиВзять небольшую пробу бетонной смеси с лотка миксера и отлить несколько кубиков в формы.
УплотнениеУплотнить состав своими руками, постучав по форме молотком.
ВыдержкаВыдержать кубики при влажности 90% и температуре окружающей среды +20°С. Исключить попадание прямых солнечных лучей на кубики.
РезультатыПередать пробы в лабораторию через 28 дней. Некоторые образцы можно передавать на промежуточных стадиях затвердевания (3-й, 7-й, 14-й дни) для проведения предварительной экспертизы.

Если приведённая инструкция будет соблюдена, то с высокой точностью можно будет определить, соответствует ли раствор на стройплощадке тому, который был заказан для строительства.

Примерно так выглядят кубики для лабораторного анализа

Вывод

Все сложные расчеты проводятся в условиях лабораторий и необходимы в строительстве многоэтажных зданий. Что касается малоэтажного строительства, то видео в этой статье продемонстрирует, как добиться отличного результата в приготовлении раствора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector