Profilpipe.ru

Профиль Пипл
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коэффициенты теплопроводности силикатного кирпича

Силикатный тёплый кирпич

Теплопередача и паропроницаемость ограждающих конструкций из газобетона с облицовкой из силикатного кирпича

Ограждающие стены из газобетона с облицовкой из силикатного кирпича, поэтажно опирающиеся на перекрытие, широко приме­няются в конструкциях монолитных и каркасно-монолитных жи­лых зданий. И сметные расчеты, и практика строительства пока­зали экономическую эффективность и технологичность.

Конструкция ограждающей стены

Коэффициент теплопроводности сухого полнотелого силикат­ного кирпича — 0,56 Вт/(м • ºС), а кладки из него — 0,69 Вт/(м•ºС). Теплопроводность кладки полнотелых керамическихкирпи­чей составляет 0,98 Вт/(м • ºС). Как видно, коэффициент теплопро­водности полнотелого силикатного кирпича меньше коэффициента теплопроводности полнотелого керамического кирпича, значит, тепло он держит лучше. Поэтому для строительства фасадов зданий целесообразно использовать силикатный кирпич, который имеет лучшие теплоизолирующие свойства. Силикатный кирпич пре­восходит керамику, по морозостойкости, и в варианте полнотелой окраски привлекает архитекторов возможностями выразительно­го оформления фасадов.

Газобетон как теплоизоляционный материал получил широкое распространение в каркасно-монолитном строительстве.

Комбинированная конструкция из кирпича и газобетона нахо­дится подвнешними климатическими воздействиями, с одной стороны, и под воздействием пара, возникающего внутри помещений и движущегося наружу, с другой стороны. Стеновые заполнения из газобетона с наружной облицовкой кирпичом выполняют как с воздушной прослойкой, так и без нее.Прослойку используют для предупреждения переувлажнения газобетонногослоя ограждающей стены.

Сопротивление передаче

Требуемое сопротивление теплопередаче

Определим требуемое сопротивление теплопередаче R ˳ᵐᵖжилого здания, например, в Санкт-Петербурге или каком-либо другом районе Северо-Запада с нормальным влажностным режи­мом помещения. При проектировании ограждающих конструкций должны со­блюдаться нормы строительной теплотехники согласно СНиП 11-3-79 «Строительная теплотехника».

Исходя из санитарно-гигиенических и комфортных условий:

Здесь n=1 — коэффициент, принимаемый в зависимости от положения наружной поверхности стены по отношению к наруж­ному воздуху;
tB= 20 O C— расчетная температура внутреннего воздуха со­гласно ТСН 23-340-2003 «Энергетическая эффективность жилых и общественных зданий. Нормативы по энергопотреблению и теплозащите»;
tH= -26 O C— расчетная зимняя температура наружного воз­духа, равная средней температуре наиболее холодной пятидневке с обеспеченностью 0,92;
Dt H =-4 O C — нормативный температурный перепад между тем­пературой внутреннего воздуха и температурой внутренней по­верхности;
aB— коэффициент теплоотдачи внутренней поверхности стены.

Напомним, что число градусо-суток отопительного периода для Санкт-Петербурга будет ГСОП = 7796 o C /сут.. Здесь, согласно СНиП 23-01-99 «Строительная климатология», z= 220 дней — продолжительность периода со средней су­точной температурой меньше 8 градусов С, а 1,8 С — средняя температура этого периода.

В результате получаем значение сопротивления теплопередаче наружных стен, рассчитанное по предписываемому подходу, — 3,08. Выбирая наибольшее значение, окончательно получаем R ˳ᵐᵖ =3,08 м²*ºС/Вт.

Термическое сопротивление ограждающей конструкции

Требуемое сопротивлениетеплопередаче применительно к рас­сматриваемой конструкции стены будет определять лишь мини­мальную толщину теплоизолирующего газобетонного слоя. Вы­бор проектной толщины слоя должен являться результатом тех­нико-экономических расчетов. При этом подход к таким расчетам зависит от задач инвестора и заказчика-застройщика в инвестиционном проекте строительства здания. Если задача заключается в минимизации себестоимости квадратного метра площади, то тре­буется и минимальная толщина газобетона. Если инвестор и заказчик-застройщик исходят из интересов собственника или пользова­теля жилых помещений, то увеличение толщины газобетона следу­ет рассматривать как инвестиционный проект, направленный на экономию теплопотерь. Для расчетов необходимо задаться вопро­сами внутренней нормы рентабельности, прогнозируемой цены на тепловые ресурсы и многими другими.

Ни первая (относительно простая), ни вторая задача не явля­лись целью вопросами работы. Чтобы показать возможность обе­спечения приемлемых характеристик ограждающей конструкции, выберем толщину газобетонной кладки, исходя из сложившейся практики. Толщину кладки силикатного лицевого пустотелого кир­пича определим по его геометрическими размерам, толщину воз­душной прослойки между кирпичем и газобетоном — технологи­ческой реализуемостью.

Н.И. ВАТИН , д. т. н.,проф., зав. кафедрой «Технология, организация и экономика строительства» инженерно-строительногофакультета ГОУ СПбГПУ,Г.И. ГРИНФЕЛЬД ,начальник отдела техническогоразвития

компании « АЭРОК », О.Н. ОКЛАДНИКОВА , инженер ГОУ СПбГПУ,С.И. ТУЛЬКО , генеральный директор Павловского завода строительных материалов

Технические характеристики и свойства силикатного кирпича

Прочность силикатного кирпича и маркировка

По критериям прочности силикатный кирпич выпускается следующих марок М — 75; 100; 125; 150; 200 и 250. Иногда встречается кирпич М300 и М350. Высокая прочность силикатного кирпича на сжатие (кг/см2) — главное достоинство стенового материала. Показатель прочности (от 7 до 35 МПа) отражен в маркировке кирпича и обозначается буквой «М». Линейный ряд представлен продукцией марки от М 75 до М 200. Числовое значение показывает величину максимально допустимого давления в килограммах на 1 кв. см. кирпича. Например, кирпич марки М 100 выдерживает давление/нагрузку без последующей деформации в 100 кг на каждый см2. Если рассматривать одноэтажное здание, то нагрузка на стены редко превышает 100 кг/см2, поэтому для возведения стен используют силикатные камни марки М 100. Но при возведении более высоких строений требуется кирпич, допускающий большую нагрузку — М150 или М200.

Читать еще:  Угловой элемент сайдинга под кирпич

Морозостойкость кирпича

Морозостойкость силикатного кирпича измеряется в циклах и, наряду с прочностью, является показателем его долговечности. Если по прочности силикатные образцы имеют целую линейку продукции, то по морозостойкости изготавливается только четыре типа, которые обозначаются как F15, F25, F35, F50. Причем лицевой кирпич выпускают только двух марок — F35 и F50. Число (цифра) в маркировке обозначает число замерзаний и оттаиваний силикатного материала в воде. Морозостойкость рядового кирпича, например, марки F25 должна выдерживать, как минимум, 25 циклов замораживания (t= -18град.С) и столько же оттаивания (t= +20град.С) без признаков разрушения — трещин или шелушения поверхности.

Цифры в маркировке морозостойкость кирпича показывают его потенциальную способность противостоять циклам замораживания, и получены эти данные в жестких лабораторных испытаниях. В природе же насыщение кирпича влагой происходит не так интенсивно, да и перепады температур с плюса на минус, не такие резкие, как при испытаниях. Поэтому при правильных инженерных решениях, касающихся паро- и гидроизоляции, долговечность силикатного кирпича значительно увеличивается.

Водопоглащение

Водопоглощение силикатного кирпича напрямую зависит от его пористости. На пористость изделия влияет: зернистость компонентов исходной смеси, ее влажность и величина удельного давления при прессовании. Водопоглощение силикатного продукта не должно превышать 13%. При намокании облицовочного кирпича от дождей теплопроводность силикатного кирпича может увеличиться в несколько раз, что снижает теплоизоляционные параметры наружной стены. Пониженная стойкость кирпича к воздействию влаги сглаживается путем его обработки гидрофобными пропитками. Приобретая водоотталкивающие свойства, кирпич при этом сохраняет способность дышать. Однако, учитывая повышенную склонность материала к водопоглощению, силикатный кирпич не используют при возведении фундаментов, подвалов и помещений, эксплуатация которых проходит во влажностном режиме.

Плотность кирпича

На прочность стенового материала оказывает влияние такая опция, как плотность кирпича силикатного. Эта величина определяется отношением массы одного кирпича к его объему, в который входят, естественно, и поры и пустоты, присутствующие в изделии. Чем меньше пустот в теле силикатного бруска, тем он прочнее.

Плотность силикатного кирпича, кг/м3:

  • Полнотелый — 1840. 1933
  • Пустотелый — 1135. 1577

Теплопроводность

В прямой зависимости от плотности силикатного образца находится коэффициент теплопроводности силикатного кирпича, который находится в пределах 0,35-0,7 Вт/(мград.С).

Коэффициент теплопроводности у силикатного полнотелого кирпича — 0,7-0,8 Вт/м*К, у кирпича с техническими пустотами — 0,66-0,68 Вт/м*К, а у щелевого — 0,4 Вт/м*К. То есть, чем ниже этот показатель, тем теплоизоляционные свойства кирпича выше

Звукоизоляция

Силикатный кирпич отличается от керамического лучшей звукоизоляцией. Средний показатель звукопоглащения составляет 64 Дб.Используя такое качество материала, как превосходная звукоизоляция, силикатный кирпич успешно используют при устройстве межкомнатных перегородок.

Так же как и кирпич облицовочный, силикатный выпускается несколько видов. Из рядового кирпича (250х120х65 мм и 250х120х88 мм) возводят стены, колонны, перегородки. Лицевой кирпич, белый или с пигментом, при кладке наружных стен, служит фактурой самого здания. Выбор кирпича (марки, размера и фактуры) должен аргументироваться условиями будущей эксплуатации строения и требованиями эстетики. Правильный выбор силикатного материала позволит потребителю оптимизировать затраты на возведение/ремонт объекта, выйти на более эффективный уровень строительного процесса и построить здание, внутри — комфортное, а внешне — современное и презентабельное.

Теплопроводность кирпичной стены

Статистика свидетельствует, что несмотря на последние разработки в области строительства и применением новых технологий, а вместе с ними и новых строительных материалов в домостроении, застройщики по прежнему не забывают о старом добром друге строителя — кирпиче. И все потому, что кирпич обладает множеством

положительных качеств, благодаря которым он продолжает оставаться номером один в строительстве жилых домов.

Свойства кирпичных стен

Во-первых, кирпич относится к негорючим материалам. Во-вторых, его высокая экологичность обусловлена тем, что для его производства используется глина — проверенный временем абсолютно безопасный материал. В-третьих, за счет свойства кирпича пропускать воздух, кирпичные стены «дышат», поэтому внутри кирпичного дома создается благоприятная среда для проживания. К несомненным плюсам стен из кирпича нужно отнести и их устойчивость к природным капризам.

Кирпичные стены обладают прекрасными шумоизоляционными свойствами и славятся своей долговечностью. В дополнение ко всему кирпич обладает не только богатой гаммой цветовых решений(красный, белый, кремовый, розовый, желтый и т.д.), но и разнообразием в форме и фактуре. Поэтому если Вы хотите построить для себя, крепкий, красивый и неповторимый по дизайну дом, выбирайте кирпич. Кстати, изготовить кирпич можно и самостоятельно.

И вместе с тем, строительство из кирпича отличается своей высокой стоимостью. Так как кирпичные стены получаются очень тяжелыми, то они требуют для себя более мощного фундамента(возрастают затраты на обустройство фундамента). Кроме того из-за высокой теплопроводности кирпича для постройки домов с круглогодичным проживанием, требуется возведение более толстых стен(минимум 510 мм).

Читать еще:  Станок для ручного производства кирпича

Коэффициент теплопроводности

Способность стены передавать тепло — называется «теплопроводностью стены». Для числового определения параметров теплопроводности применяют коэффициент теплопроводности — λ (лямбда) , измеряемый в Вт/(м2*С°). Суть коэффициента: чем он меньше, тем ниже будут затраты на отопление.

Теплопроводность кирпича сильно варьируется в зависимости от его состава, влажности и плотности. То есть чем выше плотность кирпича, тем его теплопроводность выше. Например теплопроводность силикатного кирпича(90 % — кварцевый песок плюс 10 % извести), ниже теплопроводности керамического кирпича(обожженная глиняно-песчаная смесь). Следовательно силикатный кирпич способен дольше, чем керамический удерживать тепло, поэтому его в основном применяют в отделке кирпичных фасадов.

По плотности кирпичную продукцию делят на три большие группы:

  • обыкновенный кирпич, плотность 1700—1800 кг/м³ ;
  • условно-эффективный кирпич (1400—1600 кг/м³);
  • эффективный кирпич (менее 1100 кг/м³);

В первую группу входят полнотелые кирпичи, коэффициент λ которой составляет 0,6-0,7 Вт/(м2*С°). Вторую группу представляют пустотные кирпичи с долей пустот от 5 до 40 % и λ = 0,35-0,5 Вт/(м2*С°). И наконец третья группа — это группа поризованных кирпичей с коэффициентом λ= 0,18-0,25 Вт/(м2*С°).

Благодаря такому многообразию форм и составу кирпича, а так же широкой вариативности кирпичной кладки, эксплуатационные характеристики и толщину кирпичной стены можно варьировать. Снижение коэффициента теплопроводности достигается путем создания во время кладки замкнутых воздушных камер.

Расчет теплопроводности кирпичной стены

Так какой же толщины должна быть кирпичная стена, чтобы она смогла защитить нас от российских морозов? Как дорого это будет стоить? И тут нам не обойтись без помощи современных технологий в домостроении. Так например применение «эффективной» кладки позволяет нам не только не разориться на строительстве но и позволяет качественно утеплить кирпичную стену. Суть приема в том, что кладется не сплошная кирпичная стена, а всего два ряда кирпичей, с заполнением пространства между ними утеплителем. Существенно уменьшить толщину стены и одновременно снизить ее теплопроводность позволяют последние разработки в области утепления фасадов.

Для того чтобы понять сколько нам придется тратить на отопление дома, при той или иной конструкции кирпичной стены, нам необходимо заранее просчитать теплосопротивление выбранной конструкции кирпичной стены.

Как правило кирпичная стена жилого дома состоит из нескольких слоев. И для того чтобы определить ее теплосопротивление, нужно предварительно рассчитать теплосопротивление каждого ее слоя. Обозначим коэффициент теплосопротивления за R,тогда теплосопротивление стены из одного слоя можно рассчитать по формуле: R = δ / λ

где — λ (лямбда) коэффициент теплопроводности материала из которого состоит слой, а δ (дельта) — толщина этого слоя в метрах. Суммируя полученные значения по каждому из слоев получаем теплосопротивление всей конструкции. Ну и для того чтобы понять насколько она получится теплой, нужно полученное значение сравнить с табличным значением теплосопротивления для города или района в котором ведется строительство.

Применяя данную схему, можно самостоятельно просчитать теплосопротивление любой конструкции стены и выбрать в итоге для себя тот вариант, который Вас полностью удовлетворит по оптимальному соотношению цена-качество, и именно для вашего региона строительства.

Рекомендую посмотреть также и видео по данной теме:

Кирпич силикатный коэффициент теплопроводности

ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЁТ СТЕНЫ – полнотелый силикатный кирпич 640 мм.

Теплотехнический расчет стены.

Цель теплотехнического расчета – вычислить толщину утеплителя при заданной толщине несущей части наружной стены, отвечающей санитарно-гигиеническим требованиям и условиям энергосбережения. Иными словами – у нас есть наружные стены толщиной 640 мм из силикатного кирпича и мы собираемся их утеплить пенополистиролом, но не знаем какой толщины необходимо выбрать утеплитель, чтобы были соблюдены строительные нормы.

Теплотехнический расчет наружной стены здания выполняется в соответствии со СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».

Теплотехнические показатели используемых строительных материалов (по СНиП II-3-79*)

Характеристика материала в сухом состоянии

Расчетные коэффициенты (при условии эксплуатации по приложению 2) СНиП II-3-79*

Коэффициент теплопроводности λ, Вт/м*°С

Теплоусвоения (при периоде 24 ч)

Цементно-песчаный раствор (поз. 71)

Кирпичная кладка из сплошного кирпича силикатного (ГОСТ 379-79) на цементно-песчаном растворе (поз. 87)

Пенополистирол (ГОСТ 15588-70) (поз. 144)

Цементно-песчаный раствор – тонкослойная штукатурка (поз. 71)

1- штукатурка внутренняя (цементно-песчаный раствор) – 20 мм

2- кирпичная стена (силикатный кирпич) – 640 мм

3- утеплитель (пенополистирол)

4- тонкослойная штукатурка (декоративный слой) – 5 мм

При выполнении теплотехнического расчёта принят нормальный влажностный режим в помещениях – условия эксплуатации («Б») в соответствии с СНиП II-3-79 т.1 и прил. 2, т.е. теплопроводность применяемых материалов берём по графе «Б».

Вычислим требуемое сопротивление теплопередаче ограждения с учетом санитарно-гигиенических и комфортных условий по формуле:

где tв – расчётная температура внутреннего воздуха °С, принимаемая в соответствии с ГОСТ 12.1.1.005-88 и нормами проектирования

соответствующих зданий и сооружений, принимаем равной +22 °С для жилых зданий в соответствии с приложением 4 к СНиП 2.08.01-89,

Читать еще:  Характеристика шамотного кирпича с красным печным

tn – расчётная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки, обеспеченностью 0,92 по СНиП 23-01-99 для г. Ярославль принимается равной -31°С,

n – коэффициент, принимаемый по СНиП II-3-79* (таблица 3*) в зависимости от положения наружной поверхности ограждающей конструкций по отношению к наружному воздуху и принимается равным n=1,

Δ t n – нормативный и температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции – устанавливается по СНиП II-3-79* (таблица 2*) и принимается равным Δ t n =4,0 °С,

αв – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным αв = 8,7 Вт/м 2 *°С.

R тр = (22- (-31))*1 / 4,0* 8,7 = 1,52

Определим градусо-сутки отопительного периода по формуле:

где tв – то же, что и в формуле (1),

tот.пер – средняя температура, °С, периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99,

zот.пер – продолжительность, сут., периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99,

Определим приведенное сопротивление теплопередаче Rо тр по условиям энергосбережения в соответствии с требованиями СНиП II-3-79* (таблица 1б*) и санитарно-гигиенических и комфортных условий. Промежуточные значения определяем интерполяцией.

Сопротивление теплопередаче ограждающих конструкций (по данным СНиП II-3-79*)

Здания и помещения

Градусо-сутки отпительного периода, ° С*сут

Приведенное сопротивление теплопередаче стен, не менее R тр (м 2 *°С)/Вт

Общественные административные и бытовые, за исключением помещений с влажным или мокрым режимом

Сопротивление теплопередаче ограждающих конструкций R(0) принимаем как наибольшее из значений вычисленных ранее:

R тр = 1,52 тр = 3,41, следовательно R тр = 3,41 (м 2 *°С)/Вт = R .

Запишем уравнение для вычисления фактического сопротивления теплопередаче R ограждающей конструкции с использованием формулы в соответствии с заданной расчетной схемой и определим толщину δx расчётного слоя ограждения из условия:

где δi – толщина отдельных слоёв ограждения кроме расчётного в м,

λi – коэффициенты теплопроводности отдельных слоев ограждения (кроме расчётного слоя) в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1,

δx – толщина расчётного слоя наружного ограждения в м,

λx – коэффициент теплопроводности расчётного слоя наружного ограждения в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1,

αв – коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным αв = 8,7 Вт/м 2 *°С.

αн – коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции принимается по по СНиП II-3-79* (таблица 6*) и принимается равным αн = 23 Вт/м 2 *°С.

Термическое сопротивление ограждающей конструкции с последовательно расположенными однородными слоями следует определять как сумму термических сопротивлений отдельных слоев.

Для наружных стен и перекрытий толщина теплоизоляционного слоя ограждения δ x рассчитывается из условия, что величина фактического приведённого сопротивления теплопередаче ограждающей конструкции R должна быть не менее нормируемого значения R тр , вычисленного по формуле (2):

Раскрывая значение R , получим:

Исходя из этого, определяем минимальное значение толщины теплоизоляционного слоя

δx = 0,041*(3,41- 0,115 – 0,022 – 0,74 – 0,005 – 0,043)

Принимаем в расчёт толщину утеплителя (пенополистирол) δx = 0,10 м

Определяем фактическое сопротивление теплопередаче рассчитываемых ограждающих конструкций R , с учётом принятой толщины теплоизоляционного слоя δx = 0,10 м

Теплоизоляция (утеплитель пенополистирол с коэффициентом теплопроводности 0,041) толщиной 100 мм при толщине несущей части наружной стены из силикатного кирпича толщиной 640 мм на цементно–песчаном растворе соответствует санитарно-гигиеническим требованиям и условиям энергосбережения.

При эксплуатации стены без утеплителя “точка росы” возникает в толще стены. Стена просто отсыревает и не аккумулирует тепло. Поверхность стены в помещении при отрицательной температуре – холодная, что приводит к образованию на стене плесени и конденсата.

При эксплуатации стены с утеплителем “точка росы” не возникает в стене. В некоторых случаях – при повышении влажности внутри помещения и понижении температуры снаружи точка росы появится в утеплителе ближе к наружной стороне – со временем выветривается.

Стена остаётся сухой всегда. Поверхность стены в помещении при отрицательной температуре – тёплая, чуть ниже комнатной температуры воздуха.

А вот что будет происходить в стене при внутреннем утеплении .

При внутреннем утеплении стены “точка росы” образуется сразу после утеплителя. В этом месте (за утеплителем) всегда будет плесень! Если утеплитель минераловатные плитты, то он будет впитывать всю образующуюся влагу как губка. В помещении повышается влажность.

Так же вы можете выполнить самостоятельно теплотехнический расчёт онлайн

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector